

Российский Федеральный Ядерный Центр – ВНИИ технической физики имени академика Е. И. Забабахина

А.В.Абрамов, А.П.Бекетов, Г.Н.Рыкованов, А.Н.Хрулёв, А.О.Чернявский

ОЦЕНКА ВЛИЯНИЯ ДЕЙСТВУЮЩИХ ФАКТОРОВ НА ТЕПЛОВОЕ И НАПРЯЖЕННОЕ СОСТОЯНИЕ ПУНКТА ГЛУБИННОГО ЗАХОРОНЕНИЯ РАДИОАКТИВНЫХ ОТХОДОВ

Препринт № 262

2019

Оглавление

Список сокращений
Реферат
Введение
 Оценка влияния тектонических напряжений в массиве пород, вмещающем ПГЗРО, на напряженное состояние, создаваемое температурным полем контейнеров с высокоактивными отходами
1.1. Оценка влияния тектонических напряжений
1.2. Обсуждение результатов решения задачи напряженного состояния гранитного блока с учетом действия тектонических напряжений во вмещающем ПГЗРО массиве
2. Результаты расчетов на модели с неоднородной геологической структурой
2.1. Сопоставление результатов расчетов для моделей с одной вертикальной плоскостью симметрии и упрощенной моделью с вертикальной и горизонтальной плоскостями симметрии
2.2. Сопоставление результатов расчетов для моделей с неоднородной геологической структурой для различного тепловыделения на 2-м участке
2.3. Обсуждение результатов решения задачи напряженного состояния цельного гранитного блока на модели с неоднородной геологической структурой
3. Результаты расчетов на модели с уменьшенной в 2 раза загрузкой скважин захоронения
4. Оценка влияния тепловыделения РАО 2-го класса
Заключение
Литература

Список сокращений

BAO, CAO	высокоактивные, среднеактивные отходы
КЭ	конечный элемент
МКЭ (КЭМ)	метод конечных элементов
HC	напряженное состояние
ПГЗРО	пункт глубинного захоронения радиоактивных отходов
PAO	радиоактивные отходы

Реферат

Рассматривается задача расчета теплового и напряженного состояния геологической структуры, вмещающей пункт глубинного захоронения радиоактивных отходов (ПГЗРО) на участке «Енисейский» Нижнеканского массива (Красноярский край).

Приведены результаты моделирования температурных полей в области скважин и в массиве вмещающих пород, а также напряженного состояния (HC) вмещающей породы. Для моделирования тепловых процессов и HC использовался метод конечных элементов (МКЭ). В проведенных расчетах рассматривалось влияние на тепловое и напряженное состояние вмещающих ПГЗРО пород таких факторов, как: тепловыделение долгоживущих радиоактивных отходов (PAO) 2-го класса опасности; тепловыделение высокоактивных отходов (BAO) 1-го класса опасности; влияние тектонических напряжений действующих в цельном гранитном блоке на HC вмещающих ПГЗРО пород; влияние неоднородности геологической структуры массива пород и увеличение мощности тепловыделения PAO 1-го класса опасности на втором участке захоронения. Полученные результаты описывают пространственное и временное изменение температуры и HC внутри объема ПГЗРО и окружающей породы. Результаты показывают, что температура в ПГЗРО и ограниченном объеме массива пород во многих случаях превышает 100°С, при этом растягивающие, сдвиговые и сжимающие напряжения во вмещающей породе превышают предел прочности гранита.

Введение

Окончательную изоляцию отвержденных радиоактивных отходов (РАО) от биосферы в РФ предусматривается осуществлять в пунктах глубинного захоронения радиоактивных отходов (ПГЗРО) в диапазоне глубин до 525 м от поверхности (рис. 1) в Нижнеканском массиве пород. Согласно проекту ПГЗРО, остеклованные высокоактивные отходы (РАО 1-го класса опасности) будут размещены в вертикальных скважинах диаметром 1,3 м, глубиной 75 м, между двумя горизонтами (плюс 5 м и минус 70 м в балтийской системе отсчета), а долгоживущие РАО 2-го класса опасности – в камерах захоронения.

В препринте [1] была рассмотрена задача численного моделирования температурных полей в области скважин (инженерного барьера) и в массиве вмещающих пород ПГЗРО. Решение базировалось на опубликованных ИБРАЭ РАН данных [3]. Было проведено независимое моделирование температурных полей и дополнительно в связанной постановке (тепло плюс прочность) было получено напряженное состояние (HC) вмещающей породы как цельного гранитного блока на период до 500 лет после начала помещения в скважины контейнеров с высокоактивными радиоактивными отходами (PAO 1-го класса опасности).

Проведенные расчеты для ПГЗРО с 462 скважинами захоронения по 18 контейнеров с высокоактивными отходами в каждой, имеющими начальное тепловыделение 1,0 кВт/м³ на первом участке и 1,5 кВт/м³ на втором участке (без учета тепловыделения РАО 2-го класса), показали, что массив вмещающих ПГЗРО пород является теплонапряженным с параметрами близкими к условиям повреждения геологической структуры.

Рис. 1. Схема расположения РАО в ПГЗРО

Численные решения теплового и напряженного состояния ПГЗРО [1] не учитывали: влияние неоднородности геологической структуры массива пород (размеров цельного гранитного блока), в котором будет расположен ПГЗРО; тепловыделение долгоживущих РАО 2-го класса опасности; влияние тектонических напряжений действующих в цельном гранитном блоке на НС вмещающих ПГЗРО пород; возможное увеличение мощности тепловыделения РАО 1-го класса опасности на втором участке захоронения.

В данной работе приведены результаты дополнительных численных исследований, которые показали, что учет вышеперечисленных факторов приводит к повышению температуры в ПГЗРО и ограниченном объеме массива пород, при этом растягивающие, сдвиговые и сжимающие напряжения во вмещающей породе превышают предел прочности гранита.

1. Оценка влияния тектонических напряжений в массиве пород, вмещающем ПГЗРО, на напряженное состояние, создаваемое температурным полем контейнеров с высокоактивными отходами

1.1. Оценка влияния тектонических напряжений

Согласно данным работы [2], в цельном гранитном блоке, в котором будет размещается ПГЗРО, главные сжимающие напряжения σ_3 , вызванные тектоническим воздействием, могут достигать 30 МПа при напряжении бокового отпора порядка $1/3\sigma_3$.

На рис. 2 представлена расчетная модель с более детальным моделированием фрагмента скважины захоронения, используемая в работе [1]. Предполагалось, что массив пород является сплошным гранитным блоком, начиная от дневной поверхности. Так как хранилище имеет две плоскости симметрии, модель включала в себя четверть ПГЗРО и массива окружающих пород и имела размер 1500×550×550 м. ПГЗРО находится в центре блока на горизонтальной плоскости симметрии. Боковые поверхности блока могут двигаться вдоль осей координат, но не поворачиваться. Конечно-элементная сетка выполнена со сгущением в зоне максимальных напряжений, так что относительный перепад температуры по конечному элементу (КЭ) δT^{*} составил 0,03, что обеспечивает достаточную точность расчета напряжений. Подробное описание данной модели приведено в работе [1].

Рис. 2. Расчетная модель сплошного гранитного массива с ПГЗРО со встроенной областью (более детальным моделированием фрагмента скважины захоронения)

Теплофизические и физико-механические свойства материалов, принятые в расчете, задавались такими же, как в предыдущих расчетах [1], и приведены в табл. 1, 2.

Таблица 1

Tenno phon teenne ebonetba statephanob, nphilible b paeteran						
Материал	Теплопроводность, Вт/(м·К)	Теплоемкость, Дж/(кг·К)	Плотность, кг/м ³			
Остеклованные РАО	2,4	800	2500			
Вмещающая порода	2,91	840	2700			
Инженерные барьеры	8,1	1500	2800			

Теплофизические свойства материалов, принятые в расчетах

* $\delta T = \max_{i} \frac{T_{max_{i}} - T_{min_{i}}}{T_{max_{i}}}$, здесь $T_{max_{i}}$ и $T_{min_{i}}$ – максимальная и минимальная температура в конечном элементе

номер *i*; максимум берется по всем конечным элементам модели.

Таблица 2

Физико-механические свойства материалов, задаваемые в расчетах							
	Monun Koodd Koodd musium	Молили	Koodad	Козфф линейного	Пред	ел прочности,	МПа
Материал	упругости, <i>E</i> , МПа	Пуассона, µ	, расширения, α, 1/К	на сдвиг, σ _s	на разрыв, σ _р	на сжатие, σ _{сж}	
Вмещающая порода (гранит)	6,2·10 ⁴	0,22	8.10-6	10	8	155	
Инженерные барьеры (бентонит)	940	0,2	28.10-6	_	0,8	7,5	
Остеклованные РАО	7.10^{4}	0,25	0,8.10-6	_	35	500	

Моделировалось постепенное заполнение ПГЗРО, при этом каждый год заполнялись скважины одной камеры захоронения. Таким образом, общее время заполнения равно 28 лет. Начальная температура во всей расчетной области принималась равной 9°C. Тепловыделение РАО 2-го класса опасности, располагаемых в камерах не учитывалось (постановка задачи аналогично ИБРАЭРАН).

При формировании расчетной области были сделаны упрощения, аналогичные расчетам [3]. Так, тепловыделение было принято равномерно распределенным вдоль скважины, материалы инженерных барьеров (бентонит, шликер, бетон, стенки контейнеров и бидонов) были сгруппированы в один материал с усредненными свойствами. Все транспортно-технологические выработки и камеры захоронения считались заполненными вмещающей породой с самого начала.

Предполагалось, что тепловыделение уменьшается по экспоненциальному закону

$$q = q_0 \exp\left(-t/t_0\right),\tag{1}$$

где q – текущее тепловыделение, Вт; t – время; q_0 – начальное тепловыделение, Вт; t_0 – время, за которое начальное тепловыделение уменьшается в е раз (в расчетах принималось равным 40 годам). Значение начальной мощности для участка 1 (рис. 1) принималось равным 1,0 кВт/м³, для участка 2 – равным 1,5 кВт/м³.

Расчеты проводились методом конечных элементов (МКЭ) в связанной постановке (тепло плюс прочность) с учетом собственного веса вмещающей породы массива.

Ниже приведен сравнительный анализ результатов расчетов для следующих вариантов тектонического воздействия:

- вариант 1 тектонические напряжения отсутствуют ($\sigma_x = 0$ МПа, $\sigma_z = 0$ МПа);
- вариант 2 главные сжимающие тектонические напряжения σ₃ направлены вдоль оси симметрии ПГЗРО ($\sigma_x = 30$ МПа, $\sigma_z = 10$ МПа);
- вариант 3 главные сжимающие тектонические напряжения σ₃ направлены перпендикулярно плоскости симметрии ПГЗРО ($\sigma_x = 10$ МПа, $\sigma_z = 30$ МПа).

Для анализа прочности грунтовых массивов используется критерий Кулона-Мора. При нагружении грунты работают преимущественно на сдвиг в направлении наименьшей прочности. Поэтому сдвиговая прочность является определяющей прочностной характеристикой для грунтов. Разрушение реализуется в тот момент, когда величина сдвигового (касательного) напряжения достигает предела прочности грунта на сдвиг. Прочность грунта при сдвиге зависит от его свойств и силы внутреннего трения.

Критерий Кулона–Мора, определяющий сопротивление грунта сдвигу, описывается следующим выражением:

$$\tau = \sigma \operatorname{tg}(\varphi) + \sigma_s, \tag{2}$$

где τ – предельные касательные напряжения; σ – нормальные к площадке сдвига напряжения, ϕ – угол внутреннего трения; σ_s – прочность грунта на срез (сцепление). Для гранита $\sigma_s = 10$ МПа, $\phi = 35^{\circ}$.

На рис. 3 показано пространственное распределение коэффициентов запаса прочности по критерию Кулона–Мора в сплошном гранитном массиве для разных вариантов тектонического воздействия на момент достижения минимального запаса по сдвиговой прочности грунта.

Без учета тектонических напряжений

С учетом тектонических напряжений (вариант 2)

С учетом тектонических напряжений (вариант 3)

Наличие сжимающих напряжений, связанных с тектоническим воздействием, положительно сказывается на напряженном состоянии массива над захоронением – минимальные значения коэффициентов запаса порочности гранитного массива по критерию Кулона–Мора увеличиваются с 1,08 до 1,3.

На рис. 4 показано напряженное состояние массива вблизи центральной скважины 8-й камеры захоронения для разных вариантов тектонического воздействия на этапе разогрева гранитного массива в ходе загрузки ПГЗРО.

В табл. 3 приведены параметры напряженного состояния гранитного массива на границе центральной скважины 8-й камеры захоронения при разных уровнях тектонических напряжений до заполнения ПГЗРО.

Наличие тектонических напряжений с максимальным уровнем в 30 МПа приводит к значительному увеличению (в 3–4 раза) сжимающих и касательных напряжений вблизи скважины захоронения до заполнения ПГЗРО. Данные напряжения оказывают дополнительное влияние на напряженное состояние в процессе разогрева в ходе загрузки ПГЗРО.

Рис. 3. Распределение коэффициентов запаса прочности по критерию Кулона–Мора (ед.) в сплошном гранитном массиве с ПГЗРО через 60 лет с начала заполнения

Распределение главного сжимающего напряжения σ₃, МПа

Распределение коэффициентов запаса прочности по критерию Кулона-Мора, ед.

Без учета тектонических напряжений

С учетом тектонических напряжений (вариант 2)

Рис. 4. НДС вблизи скважины захоронения через 60 лет с начала заполнения ПГЗРО

Таблица 3

Напряженное состояние сплошного гранитного массива на границе центральной скважины 8-й камеры захоронения при разных уровнях тектонических напряжений до заполнения ПГЗРО

Параметр	Вариант 1 (σ _x =0 МПа, σ _z =0 МПа)	Вариант 2 (σ _x =30 МПа, σ _z =10 МПа)	Вариант 3 (σ _x =10 МПа, =30 МПа)
Максимальные сжимающие напряжения σ ₃ , МПа	15,3	57	57
Минимальный коэффициент запаса прочности по сжимающим напряжениям, ед.	>10	2,7	2,7
Максимальные касательные напряжения, МПа	7,3	24	24
Минимальный коэффициент запаса прочности по критерию Кулона–Мора, ед.	1,9	1,23	1,23

На рис. 5 показаны графики изменения напряженного состояния гранитного массива вблизи центральной скважины 8-й камеры захоронения для разных вариантов тектонического воздействия в ходе загрузки ПГЗРО.

В табл. 4 приведены параметры напряженного состояния массива на границе центральной скважины 8-й камеры захоронения при разных уровнях тектонических напряжений через 60 лет с начала заполнения ПГЗРО.

Наличие тектонических напряжений в гранитном массиве с максимальным уровнем в 30 МПа приводит к снижению коэффициентов запаса прочности до опасных значений на границе центральной скважины 8-й камеры захоронения.

Рис. 5. Изменение напряжений и запаса прочности в граните на границе с центральной скважиной 8-й камеры ПГЗРО для разных вариантов тектонического воздействия

Таблица 4

Напряженное состояние гранитного массива на границе центральной скважины 8-й камеры захоронения при разных уровнях тектонических напряжений через 60 лет с начала заполнения ПГЗРО

Параметр	Вариант 1 (σ _x =0 МПа, σ _z =0 МПа)	Вариант 2 (σ _x =30 МПа, σ _z =10 МПа)	Вариант 3 (σ _x =10 МПа, σ _z =30 МПа)
Максимальные сжимающие напряжения σ ₃ , МПа	94,7	135	151
Минимальный коэффициент запаса прочности по сжимающим напряжениям, ед.	1,6	1,15	1,03
Максимальные касательные напряжения, МПа	36,2	52	60
Минимальный коэффициент запаса прочности по критерию Кулона–Мора, ед.	1,28	1,08	1,02

1.2. Обсуждение результатов решения задачи напряженного состояния гранитного блока с учетом действия тектонических напряжений во вмещающем ПГЗРО массиве

Учет воздействия тектонических напряжений показал:

1. Наличие сжимающих напряжений, связанных с тектоническим воздействием, положительно сказывается на напряженном состоянии массива окружающих ПГЗРО пород, находящихся под действием температурного градиента, – минимальные значения коэффициентов запаса прочности гранитного массива над захоронением по критерию Кулона–Мора увеличиваются с 1,08 до 1,3.

2. Наличие тектонических напряжений с максимальным уровнем в 30 МПа (с учетом действия температурных напряжений от захороненного РАО) приводит к снижению коэффициентов запаса прочности массива вмещающих ПГЗРО пород до опасных значений вблизи скважин захоронения. Аналогичное снижение прочности массива следует ожидать вблизи камер захоронения и транспортно-технологических выработок.

2. Результаты расчетов на модели с неоднородной геологической структурой

На предыдущих этапах анализа теплового и напряженного состояния ПГЗРО использовалась модель с двумя плоскостями симметрии (одна четверть ПГЗРО) без учета геологической структуры массива (рис. 1). Усложним используемую в расчетах КЭ модель. На рис. 6 показана расчетная модель, разработанная с учетом геологической структуры массива [11], вмещающего ПГЗРО.

Данная модель имеет одну вертикальную плоскость симметрии. На боковых поверхностях задано условие ограничения по повороту [1], для нижней грани запрещены вертикальные смещения. Конечно-элементная сетка выполнена со сгущением в зоне максимальных напряжений, так что относительный перепад δT температуры по КЭ (см. сноску на с. 5) не превышает 0,05, что обеспечивает достаточную точность расчета напряжений для вмещающего ПГЗРО массива пород.

Все транспортно-технологические выработки и камеры захоронения считались заполненными вмещающей породой с самого начала.

Теплофизические и физико-механические свойства материалов, принятые в расчете цельного гранитного массива вмещающего ПГЗРО, задавались такими же, как в предыдущих расчетах (табл. 1, 2). Для слоев породы, имеющих крупноблочную трещиноватую структуру, и осадочных пород участка «Енисейский» Нижнеканского массива (Красноярский край) нам не известны физико-механические свойства. В расчетах была учтена только их повышенная деформационная способность заданием более низкого модуля упругости материала. Для цельного гранитного массива $E = 6,2 \cdot 10^4$ МПа, для крупноблочной трещиноватой структуру $E = 1,0 \cdot 10^4$ МПа, для осадочных пород $E = 0,1 \cdot 10^4$ МПа. Теплофизические свойства для всех слоев задавались одинаковыми. Коэффициент Пуассона для слоев был принят равным 0,22, коэффициент линейного расширения $\alpha = 8 \cdot 10^{-6}$ 1/К.

Рис. 6. Расчетная модель с неоднородной геологической структурой имеет размер 1500×550×1010 м

Моделировалось постепенное заполнение ПГЗРО с экспоненциальным законом изменения тепловыделения (1), аналогичного ранее проведенным расчетам.

Расчеты проводились МКЭ в связанной постановке (тепло плюс прочность) с учетом собственного веса вмещающей породы массива. Действие тектонических напряжений не учитывалось. Начальная температура во всей расчетной области принималась равной 9°С. Тепловыделение РАО 2-го класса опасности, располагаемых в камерах, не моделировалось.

Начальное тепловыделение задавалось равным 1,0 кВт/м³ для 1-го участка ПГЗРО. Для 2-го участка ПГЗРО начальное тепловыделение задавалось от 1,5 до 9,0 кВт/м³ (моделировалась иммобилизация ВАО в стекло с боросиликатной матрицей [4–8]).

2.1. Сопоставление результатов расчетов для моделей с одной вертикальной плоскостью симметрии и упрощенной моделью с вертикальной и горизонтальной плоскостями симметрии

Проведем расчеты теплового и напряженного состояния для однородной и неоднородной (рис. 2 и 6) геологической структуры для начального тепловыделения для 1-го участка ПГЗРО 1,0 кВт/м³, на 2-м участке – 1,5 кВт/м³.

Распределения температурных полей, полученных на полной модели с учетом неоднородности геологической структуры для начального тепловыделения на 2-м участке ПГЗРО 1,5 кВт/м³, полностью совпадают с результатами, полученными на упрощенной модели с горизонтальной плоскостью симметрии и аналитическими решениями работы [1].

Полученное напряженное состояние массива имеет отличие как для модели с горизонтальной плоскостью симметрии, так и для модели с неоднородностью геологической структуры.

На рис. 7, 8 показано напряженное состояние в массиве для разных вариантов расчетных моделей.

Рис. 7. Распределение главного растягивающего напряжения σ_1 (МПа) в цельном массиве через 70 лет с начала заполнения ПГЗРО

На результаты расчета напряженного состояния оказывает влияние толщина сплошного массива над ПГЗРО. Для полной модели 1500×550×1010 м напряженное состояние получается несколько выше (рис. 7, 8), чем для упрощенной модели 1500×550×550 м (рис. 7, 8). Максимальное напряженное состояние реализуется при моделировании неоднородной структуры (рис. 7, 8).

Помимо размера цельного блока на результаты расчетов незначительное влияние оказывают граничные условия – моделирование опирания массива, либо горизонтальная плоскость симметрии по центру ПГЗРО. При отказе от горизонтальной симметрии растягивающие и сдвиговые расчетные напряжения над ПГЗРО со стороны дневной поверхности будут несколько большими, чем под ПГЗРО со стороны массива.

Упрощенная модель с двумя плоскостями симметрии (горизонтальной и вертикальной) может быть рекомендована для экспресс-расчетов и иллюстрации влияния различных факторов на НС вмещающего ПГЗРО массива.

Рис. 8. Распределение коэффициентов запаса прочности по критерию Кулона–Мора (ед.) в цельном массиве через 70 лет с начала заполнения ПГЗРО

2.2. Сопоставление результатов расчетов для моделей с неоднородной геологической структурой для различного тепловыделения на 2-м участке

Начальное тепловыделение для 1-го участка ПГЗРО 1,0 кВт/м³, на 2-м участке – 1,5; 2,0; 5,0 и 9,0 кВт/м³. На рис. 9, 10 показано распределение температуры в цельном гранитном массиве при разных уровнях начального тепловыделения на 2-м участке ПГЗРО РАО 1-го класса опасности в скважинах захоронения, без учета тепловыделения РАО 2-го класса опасности в камерах захоронения.

На рис. 11 показаны графики изменения максимальных температур и графики изменения температур на расстоянии 10 м над вершиной центральной скважины 14-й камеры в процессе распространения тепла при разных уровнях начального тепловыделения на 2-м участке ПГЗРО.

Рис. 9. Распределение температуры (°С) в цельном гранитном массиве через 55 лет с начала заполнения ПГЗРО при разных уровнях начального тепловыделения на 2-м участке ПГЗРО

Рис. 10. Распределение температуры (°С) в цельном гранитном массиве через 150 лет с начала заполнения ПГЗРО при разных уровнях начального тепловыделения на 2-м участке ПГЗРО

Значения максимальных температур при разных уровнях начального тепловыделения на 2-м участке ПГЗРО приведены в табл. 5.

Рис. 11. Изменение температуры в процессе распространения тепла

Таблица 5

Температура на расстоянии 10 м

над вершиной центральной скважины 14-й камеры

Максимальные температуры при разных уровнях начального тепловыделения на 2-м участке ПГЗРО

	Начальное тепловыделение на 2-м участке, кВт/м ³			
Параметр	1,5	2,0	5,0	9,0
Максимальная температура в скважинах, °С	110	135	320	570
Максимальная температура на расстоянии 10 м над вершиной центральной скважины 14-й камеры, °С	71	78	124	188

На рис. 12 показано пространственное распределение коэффициентов запаса прочности цельного массива по критерию Кулона–Мора для разных уровней начального тепловыделения на 2-м участке ПГЗРО через 70 лет с начала заполнения ПГЗРО. Серым цветом отмечены области превышения предела прочности по критерию Кулона–Мора.

На рис. 13 показаны зоны повреждения в цельном гранитном массиве по критерию Кулона– Мора через 200 лет с начала заполнения ПГЗРО.

В табл. 6 приведены параметры напряженного состояния цельного гранитного массива при разных уровнях начального тепловыделения на 2-м участке ПГЗРО.

Таблица б

при разных уровнях начального тепловыделения на 2-м участке по 510				
Начальное тепловыделение на 2-м участке, кВт/м ³				
1,5	2,0	5,0	9,0	
11,8	13,2	23,8	38,3	
8,7	9,8	17,4	28,6	
0,67	0,6	0,33	0,21	
15,5	17,0	29,1	45,1	
0,71	0,59	<0,1	<0,1	
	Начальное · 1,5 11,8 8,7 0,67 15,5 0,71	Начальное тепловыделен 1,5 2,0 11,8 13,2 8,7 9,8 0,67 0,6 15,5 17,0 0,71 0,59	Начальное тепловыделение на 2-м учас 1,5 2,0 5,0 11,8 13,2 23,8 8,7 9,8 17,4 0,67 0,6 0,33 15,5 17,0 29,1 0,71 0,59 <0,1	

Напряженное состояние цельного гранитного массива при разных уровнях начального тепловыделения на 2-м участке ПГЗРО

Максимальная температура

Рис. 12. Распределение коэффициентов запаса прочности по критерию Кулона–Мора (ед.) в цельном гранитном массиве через 70 лет с начала заполнения ПГЗРО

по критерию Кулона–Мора через 200 лет с начала заполнения ПГЗРО

На основании полученных результатов расчетов можно сделать следующие выводы:

- параметры напряженного состояния превышают предел прочности гранита для всех рассмотренных вариантов тепловыделения РАО на 2-м участке;
- для начального тепловыделения 1,5 и 2,0 кВт/м³ зоны повреждения носят локальный характер;
- для начального тепловыделения 5,0 и 9,0 кВт/м³ зоны повреждения затрагивают весь массив, включая зону размещения скважин.

2.3. Обсуждение результатов решения задачи напряженного состояния цельного гранитного блока на модели с неоднородной геологической структурой

Знание теплового и напряженного состояния ПГЗРО требуется на всех этапах функционирования хранилища, начиная с загрузки РАО, и является важным аспектом обоснования безопасности ПГЗРО. Реальные размеры цельного гранитного блока, в котором будет расположен ПГЗРО, в действительности будут отличаться от рассмотренных в расчетах. Определяющим фактором, влияющим на тепловой режим объектов ПГЗРО, является тепловыделение РАО и физические свойства вмещающих пород.

Проведенная оценка напряженного состояния цельного гранитного блока на модели с неодной геологической структурой показала:

1. На результаты расчета напряженного состояния оказывает влияние размер моделируемой области массива, граничные условия его закрепления и размер цельного гранитного блока, в котором будет располагаться ПГЗРО.

2. Для описания вмещающего ПГЗРО массива пород можно рекомендовать модель 1500×550×1010 м с одной вертикальной плоскостью симметрии. Боковые поверхности модели могут двигаться вдоль осей координат, но не поворачиваться, для нижней грани должны быть запрещены вертикальные смещения.

3. Упрощенная модель с двумя плоскостями симметрии (горизонтальной и вертикальной), размером 1500×550 м может быть рекомендована для экспресс-расчетов и иллюстрации влияния различных факторов на НС вмещающего ПГЗРО массива.

4. На величину возникающих максимальных напряжений в цельном гранитном блоке, в котором расположен ПГЗРО, существенное влияние оказывает толщина сплошного массива над ПГЗРО: чем она больше, тем меньше напряженное состояние массива пород.

5. Выбранный объем (4 500 м³, [9]) и плотность захоронения в скважинах РАО 1-го класса опасности (ВАО) с тепловыделением от 1,0 до 2,0 кВт/м³, без учета тепловыделения РАО 2-го класса опасности (долгоживущие – ВАО, САО), располагаемых в горизонтальных камерах, является предельным, когда зона разрушения породы еще носит локальный характер.

3. Результаты расчетов на модели с уменьшенной в 2 раза загрузкой скважин захоронения

В предыдущей главе было показано, что параметры напряженного состояния вмещающего ПГЗРО массива пород превышают предел прочности материала массива. Ниже представлены результаты расчетов на модели с неоднородной геологической структурой для половинной загрузки скважин первого и второго участка захоронения ПГЗРО (вместо 18 контейнеров в скважине предлагается разместить 9 контейнеров с РАО 1-го класса опасности). Глубина вертикальных скважин захоронения РАО 1-го класса опасности уменьшена в два раза (до 37,5 м).

На первом участке захоронения ПГЗРО размещается по 9 контейнеров в скважине с РАО 1-го класса опасности с начальным тепловыделением 1,0 кВт/м³.

На рис. 14 показано распределение температуры в цельном массиве при разных уровнях начального тепловыделения на 2-м участке ПГЗРО для половинной загрузки.

На рис. 15 показаны графики изменения температур в процессе распространения тепла при разных уровнях начального тепловыделения на 2-м участке ПГЗРО для полной и половинной загрузки.

На рис. 16 показаны графики изменения максимальных значений главного напряжения σ₁ на границе и внутри цельного гранитного массива при разных уровнях начального тепловыделения на 2-м участке ПГЗРО для полной и половинной загрузки.

Рис. 14. Распределение температуры (°С) в цельном гранитном массиве через 55 лет с начала заполнения ПГЗРО при разных уровнях начального тепловыделения на 2-м участке ПГЗРО

Рис. 15. Изменение температуры в процессе распространения тепла

Максимальное значение главного напряжения σ_1 внутри цельного гранитного массива над ПГЗРО

Рис. 16. Изменение максимальных значений главного напряжения σ_1

На рис. 17 показано пространственное распределение коэффициентов запаса по критерию Кулона–Мора для половинной загрузки через 70 лет с начала заполнения ПГЗРО. На рис. 18 показаны графики изменения коэффициентов запаса по критерию Кулона–Мора на границе и внутри цельного массива при разных уровнях начального тепловыделения на 2-м участке ПГЗРО для полной и половинной загрузки.

Рис. 17. Распределение коэффициентов запаса прочности по критерию Кулона-Мора (ед.) в цельном гранитном массиве через 70 лет с начала заполнения

Рис. 18. Изменение коэффициентов запаса по критерию Кулона-Мора на границе цельного массива

В табл. 7 приведены параметры напряженного состояния массива при разных уровнях начального тепловыделения на 2-м участке ПГЗРО при половинной загрузке.

Таблица 7

Напряженное состояние массива при разных уровнях начального тепловыделения на 2-м участке ПГЗРО при половинной загрузке

Параметр	Начальное тепловыделение, кВт/м ³		
	1,5	2,0	
Максимальные растягивающие напряжения σ_1 на границе цельного массива, МПа	7,1	7,7	
Максимальные растягивающие напряжения $\sigma_{\!_1}$ внутри цельного массива, МПа	5,3	5,8	
Минимальный коэффициент запаса по растягивающим напряжениям, ед.	1,12	1,04	
Максимальные касательные напряжения в цельном массиве, МПа	12,5	13,1	
Минимальный коэффициент запаса по критерию Кулона–Мора, ед.	1,15	1,10	

Получены результаты расчетов на модели с неоднородной геологической структурой для ПГЗРО с 462 скважинами захоронения, когда первый участок содержит по 9 контейнеров с РАО 1-го класса в каждой, имеющих начальное тепловыделение 1,0 кВт/м³, и второй участок по 9 контейнеров с РАО 1-го класса, имеющих начальное тепловыделение 1,5–2,0 кВт/м³, без учета тепловыделения РАО 2-го класса в камерах захоронения. Глубина вертикальных скважин захоронения РАО 1-го класса опасности равна 37,5 м, они находятся между двумя горизонтами – 32,5 и – 70 м (в балтийской системе отсчета). Анализ результатов показывает, что параметры

напряженного состояния не превышают предел прочности материала вмещающего ПГЗРО массива для половинной загрузки контейнеров с ВАО.

4. Оценка влияния тепловыделения РАО 2-го класса

В ПГЗРО на участке «Енисейский» РАО 2-го класса опасности будут располагаться в тонкостенных герметичных металлических контейнерах объемом 1,5 м³ в горизонтальных выработках захоронения по секциям длиной 15–20 м. После установки контейнеров секция консервируется с применением цементно-бентонитовой смеси. Общий объем по ПГЗРО РАО 2-го класса составит 155 000 м³, а РАО 1-го класса опасности – 4 500 м³ [9] (см. рис. 1). В федеральных нормах и правилах в области использования атомной энергии «Критерии приемлемости радиоактивных отходов для захоронения» (НП-093-14) [10] тепловыделение упаковки РАО 2-го класса опасности ограничивается величиной не более 100 Вт/м³, 1-го класса опасности – не более 2,0 кВт/м³. Мощность тепловыделения в ПГЗРО РАО 2-го класса опасности, если его при захоронении не ограничивать, в пределе может в 2 с лишним раза превышать мощность тепловыделения РАО 1-го класса опасности.

Ниже приведены результаты расчетов по оценке влияния тепловыделения РАО 2-го класса на температуру и напряженное состояние массива вмещающих пород ПГЗРО. В расчетах задавалось начальное тепловыделение РАО 1-го класса 1,0 кВт/м³ на первом участке ПГЗРО, 1,5 кВт/м³ – на втором.

Предполагалось, что тепловыделение РАО 2-го класса уменьшается по экспоненциальному закону. Оценки проведены для двух вариантов: время, за которое начальное тепловыделение уменьшается в *е* раз (параметр t_0), принималось равным 40 лет и 500 лет. Моделировалось постепенное заполнение ПГЗРО, при этом каждый год заполнялись скважины одной камеры захоронения РАО 1-го класса и верхняя и нижняя соответствующие камеры РАО 2-го класса. Первый участок содержит по 18 контейнеров с РАО 1-го класса в каждой скважине, имеющих начальное тепловыделение 1,0 кВт/м³, и второй участок – по 18 контейнеров с РАО 1-го класса, имеющих начальное тепловыделение 1,5 кВт/м³. Расчеты температуры были проведены аналитическим способом (см. работу [1]) и КЭМ с использованием модели с неоднородной геологической структурой.

На рис. 19 приведены зависимости температур от времени в двух точках: первая точка лежит в центре скважины захоронения по центру 8-й камеры, вторая – в центре 8-й камеры (верх ПГЗРО), для разных значений начального тепловыделения РАО 2-го класса опасности, для t_0 РАО 1-го и 2-го класса опасности, равного 40 лет.

Центр скважины захоронения по центру 8-й камеры

Центр 8-й камеры (верх ПГЗРО)

Расчеты показали, что распределения температурных полей, полученных на полной КЭ модели с учетом неоднородности геологической структуры, полностью совпадают с результатами аналитических решений. Тепловыделения РАО 2-го класса не должно превышать 5,0–10,0 Вт/м³.

На рис. 20 показаны распределения коэффициентов запаса по критерию Кулона–Мора в цельном гранитном массиве через 70 лет с начала заполнения ПГЗРО при разных уровнях начального тепловыделения РАО 2-го класса ($t_0 = 40$ лет). Серым цветом отмечены зоны превышения предела прочности по критерию Кулона–Мора.

Без учета тепла РАО 2-го класса

Рис. 20. Распределение коэффициентов запаса прочности по критерию Кулона–Мора (ед.) в цельном гранитном массиве через 70 лет с начала заполнения ПГЗРО при разных уровнях начального тепловыделения РАО 2-го класса

В табл. 8 приведены параметры напряженного состояния цельного гранитного массива размещения ПГЗРО для разных уровней тепловыделения РАО 2-го класса ($t_0 = 40$ лет), когда первый участок содержит по 18 контейнеров с РАО 1-го класса в каждой скважине, имеющих начальное тепловыделение 1,0 кВт/м³, и второй участок – по 18 контейнеров с РАО 1-го класса, имеющих начальное тепловыделение 1,5 кВт/м³, t_0 РАО 1-го класса равно 40 лет.

Таблица 8

Параметр	Начальное тепловыделение РАО 2-го класса, Вт/м ³		
Параметр	0	10	100
Максимальные растягивающие напряжения σ_1 , МПа	11,8	14,2	36,8
Минимальный коэффициент запаса прочности по растягивающим напряжениям, ед.	0,67	0,56	0,21
Минимальный коэффициент запаса прочности по критерию Кулона–Мора, ед.	0,71	0,53	<0,1

Напряженное состояние массива при разных уровнях тепловыделения РАО 2-го класса

На рис. 21,22 приведены результаты расчетов по оценке влияния параметра t₀ для начального тепловыделения РАО 2-го класса с тепловыделением 10 Вт/м³. В расчетах задавалось начальное

тепловыделение РАО 1-го класса 1,0 кВт/м³ на первом участке ПГЗРО, 1,5 кВт/м³ – на втором, t_0 РАО 1-го класса опасности было равно 40 лет. На рис. 21 показаны зависимости максимальных температур от параметра t_0 для РАО 2-го класса опасности.

Рис. 21. Зависимости температур от параметра t_0 РАО 2-го класса опасности (начальное тепловыделение РАО 2-го класса 10 Вт/м³)

На рис. 22 приведены графики изменения температуры и параметров напряженного состояния для $t_0 = 40$ лет и $t_0 = 500$ лет при начальном тепловыделении РАО 2-го класса 10 Вт/м³,

РАО 1-го класса на первом участке ПГЗРО 1,0 кВт/м³, 1,5 кВт/м³ – на втором ($t_0 = 40$ лет). Рис. 22. Изменение температуры и главного напряжения σ_1 в точках достижения максимальных значений для разных значений t_0 равных 40 и 500 лет

В табл. 9 приведены параметры напряженного состояния цельного гранитного массива при разных значениях параметра t_0 при начальном тепловыделении РАО 2-го класса 10 Вт/м³, РАО 1-го класса на первом участке ПГЗРО 1,0 кВт/м³, 1,5 кВт/м³ – на втором участке.

Таблица 9

Параметр	t ₀ , лет		
	40	500	
Максимальные растягивающие напряжения σ_1 , МПа	14,2	21,2	
Минимальный коэффициент запаса прочности по растягивающим напряжениям, ед.	0,56	0,38	
Минимальный коэффициент запаса прочности по критерию Кулона–Мора, ед.	0,53	0,21	

Напряженное состояние массива при разных значениях параметра t_0

Результаты расчетов показывают, что наблюдается существенное влияние тепловыделения РАО 2-го класса на напряженное состояние массива. При начальном тепловыделении РАО 2-го класса 10 Вт/м³, при $t_0 = 40$ лет максимальные уровни напряжений в массиве возрастают на 20–30%. При $t_0 = 500$ лет максимальные уровни напряжений в массиве возрастают в 2 раза, что приводит к увеличению зоны возможного повреждения массива. При начальном тепловыделении РАО 2-го класса 100 Вт/м³ зона повреждения распространяется на весь массив.

Анализ полученных результатов расчетов показывает, что на напряженное состояние вмещающего ПГЗРО массива влияет как уровень начального тепловыделения РАО 2-го класса опасности, так и параметр t_0 (время, за которое начальное тепловыделение РАО 2-го класса опасности уменьшается в *e* раз). Тепловыделение РАО 2-го класса опасности, располагаемых в горизонтальных камерах захоронения (верхней и нижней), необходимо учитывать при проведении оценок теплового и напряженного состояния вмещающих ПГЗРО пород.

Для захоронения РАО в Нижнеканском массиве пород, когда на первом участке будет находиться 280 скважин захоронения по 9 контейнеров с РАО 1-го класса опасности с тепловыделением 1,0 кВт/м³ и на втором участке будет 182 скважины по 9 контейнеров с РАО 1-го класса опасности с тепловыделением 1,5 кВт/м³, нужно ограничить тепловыделение РАО 2-го класса опасности в горизонтальных камерах до 1,0–5,0 Вт/м³.

Заключение

Проведены численные и аналитические исследования теплового и напряженного состояния на геологической структуре, моделирующей участок пород «Енисейский» Нижнеканского массива (Красноярский край), включающий пункт глубинного захоронения радиоактивных отходов. В проведенных расчетах рассмотрено влияние на тепловое и напряженное состояние вмещающих ПГЗРО пород таких факторов, как: тепловыделение долгоживущих радиоактивных отходов 2-го класса опасности; тепловыделение высокоактивных отходов 1-го класса опасности; влияние тектонических напряжений действующих в цельном гранитном блоке на HC вмещающих ПГЗРО пород; влияние неоднородности геологической структуры массива пород и увеличение мощности тепловыделения РАО 1-го класса опасности на втором участке захоронения.

Полученные результаты описывают пространственно-временное изменение температуры и напряженного состояния внутри объема ПГЗРО, окружающей породы. Результаты показывают, что температура в ПГЗРО и ограниченном объеме массива пород во многих случаях превышает 100°С, при этом растягивающие, сдвиговые и сжимающие напряжения во вмещающей породе превышают предел прочности гранита.

На основании экспериментального изучения свойств массива пород следует определить критериальные параметры по температуре и напряженному состоянию геологических пород, когда цельный массив, в котором планируется размещение ПГЗРО, при длительном сроке эксплуатации будет оставаться прочным. Изменение температурного и напряженного состояния массива пород, вмещающих ПГЗРО, возможно за счет оптимизации объемов, величин тепловыделения, плотности захоронения РАО 1-го и 2-го класса опасности на первом и втором участке ПГЗРО.

Литература

Абрамов, А. В. Аналитическое и численное моделирование теплового и напряженного состояния пункта глубинного захоронения радиоактивных отходов [Текст]: препринт / А. В. Абрамов, А. П. Бекетов, Г. Н. Рыкованов, А. Н. Хрулёв, А. О. Чернявский. – № 261. – Снежинск: изд-во РФЯЦ – ВНИИТФ, 2019. – 36 с.

- Морозов, В. Н. Подземная исследовательская лаборатория и сейсмические аспекты безопасности [Текст] / В. Н. Морозов, В. Н. Татаринов, В. И. Кафтан, А. И. Маневич // Радиоактивные отходы. – 2018. – № 3 (4). – С. 16–29.
- Дробышевский, Н. И. Трехмерное численное моделирование теплового состояния пункта глубинного захоронения радиоактивных отходов в Нижнеканском массиве горных пород [Текст] / Н. И. Дробышевский, Е. В. Моисеенко, Р. А. Бутов, Ю. Н. Токарев // Радиоактивные отходы. – 2017. – № 1. – С. 64–73.
- 4. **Ojovan, M. I.**, Batyukhova O. G. Glasses for nuclear waste immobilization [Text]. Waste Management' 07 Conference, Tucson, AZ.
- 5. **Petitjean, V.**, Fillet C., Veyer C. Development of vitrification process and glass formulation for nuclear waste conditioning [Text]. Waste Management' 02 Conference, Tucson, AZ.
- 6. **Bates, J. K.**, Ellison A. J. G., Emery J. W., Hoh J. C. Glass as a waste form for the immobilization of plutonium. [Text]. – Mat. Res. Soc. Symp. Proc, 1996.
- 7. **Gin, Stephane**, Jollivet Patrick, Tribet Magaly, Peuget Sylvain [Text] // Glass Tech. 2000. 41 (6). P. 186–92. Radiochim. Acta. 2017. 105(11). P. 927–959.
- Plodinec, M. J. Borosilicate glasses for nuclear waste imobilisation [Text] // Glass Tech. 2000. 41 (6). P. 186–92.
- 9. **Мартынов, К. В.** Анализ локализации и сценария эволюции ПГЗРО на участке Енисейский (Красноярский край) [Текст] / К. В. Мартынов, Е. В. Захарова // Радиоактивные отходы. – 2018. – № 2. – С. 52–62.
- 10. Критерии приемлемости радиоактивных отходов для захоронения: Федеральные нормы и правила в области использования атомной энергии. НП-093-14. Утверждены 15.12.2014. М., 2015. С. 24.
- 11. **Абрамов, А. А.** Создание подземной исследовательской лаборатории на участке «Енисейский» Нижнеканского массива, состояние и дальнейшее развитие работ [Текст] / А. А. Абрамов, В. П. Бейгул // Электронный журнал «Атомная энергия 2.0». www/atomic-energy.ru

Абрамов Алексей Витальевич Бекетов Александр Павлович Рыкованов Георгий Николаевич Хрулев Александр Николаевич Чернявский Александр Олегович

ОЦЕНКА ВЛИЯНИЯ ДЕЙСТВУЮЩИХ ФАКТОРОВ НА ТЕПЛОВОЕ И НАПРЯЖЕННОЕ СОСТОЯНИЕ ПУНКТА ГЛУБИННОГО ЗАХОРОНЕНИЯ РАДИОАКТИВНЫХ ОТХОДОВ

Препринт № 262

Выпускающий редактор Компьютерная верстка Корректор Т. Б. ПряхинаО. В. ЗавьяловаН. И. Потеряхина

Подписано в печать 20.12.2019. Формат 70×90/16. Гарнитура TimesTenC. Усл. п. л. 1,76. Тираж 50 экз. Заказ № 457

Оригинал-макет подготовлен Издательством РФЯЦ — ВНИИТФ. Адрес издательства: 456770, г. Снежинск Челябинской обл., ул. Васильева, 13, тел.: (351-46) 5-23-50, 5-22-75, e-mail: L.S.Talantova@vniitf.ru, http://www.vniitf.ru/